Increasing trees and Kontsevich cycles.
On donne une construction géométrique d’invariants généralisant la classe de Maslov-Arnold d’une immersion lagrangienne dans un fibré cotangent et l’indice de Maslov-Arnold-Leray d’une immersion lagrangienne -orientée dans : la classe de Maslov-Arnold universelle d’un fibré symplectique et l’indice de Maslov-Arnold-Leray d’un fibré -symplectique, c’est-à-dire dont le groupe structural est le revêtement à feuillets de . Tout ceci relève d’une situation géométrique générale dans laquelle s’introduisent...