Cochain operations and subspace arrangements.
In the rational cohomology of a 1-connected space a structure of -algebra is constructed and it is shown that this object determines the rational homotopy type.
The aim of this note, which raises more questions than it answers, is to study natural operations acting on the cohomology of various types of algebras. It contains a lot of very surprising partial results and examples.
An algorithmic computation of the set of unpointed stable homotopy classes of equivariant fibrewise maps was described in a recent paper [4] of the author and his collaborators. In the present paper, we describe a simplification of this computation that uses an abelian heap structure on this set that was observed in another paper [5] of the author. A heap is essentially a group without a choice of its neutral element; in addition, we allow it to be empty.
Our point of departure is J. Neisendorfer's localization theorem which reveals a subtle connection between some simply connected finite complexes and their connected covers. We show that even though the connected covers do not forget that they came from a finite complex their homotopy-theoretic properties are drastically different from those of finite complexes. For instance, connected covers of finite complexes may have uncountable genus or nontrivial SNT sets, their Lusternik-Schnirelmann category...
We aim at constructing a PL-manifold which is cellularly equivalent to a given homology manifold . The main theorem says that there is a unique obstruction element in , where is the group of 3-dimensional PL-homology spheres modulo those which are the boundary of an acyclic PL-manifold. If the obstruction is zero and is compact, we obtain a PL-manifold which is simple homotopy equivalent to .