Displaying 281 – 300 of 328

Showing per page

The construction of 3-Lie 2-algebras

Chunyue Wang, Qingcheng Zhang (2018)

Czechoslovak Mathematical Journal

We construct a 3-Lie 2-algebra from a 3-Leibniz algebra and a Rota-Baxter 3-Lie algebra. Moreover, we give some examples of 3-Leibniz algebras.

The moduli space of n tropically collinear points in Rd.

Mike Develin (2005)

Collectanea Mathematica

The tropical semiring (R, min, +) has enjoyed a recent renaissance, owing to its connections to mathematical biology as well as optimization and algebraic geometry. In this paper, we investigate the space of labeled n-point configurations lying on a tropical line in d-space, which is interpretable as the space of n-species phylogenetic trees. This is equivalent to the space of n x d matrices of tropical rank two, a simplicial complex. We prove that this simplicial complex is shellable for dimension...

The S1-CW decomposition of the geometric realization of a cyclic set

Zbigniew Fiedorowicz, Wojciech Gajda (1994)

Fundamenta Mathematicae

We show that the geometric realization of a cyclic set has a natural, S 1 -equivariant, cellular decomposition. As an application, we give another proof of a well-known isomorphism between cyclic homology of a cyclic space and S 1 -equivariant Borel homology of its geometric realization.

The universal functorial Lefschetz invariant

Wolfgang Lück (1999)

Fundamenta Mathematicae

We introduce the universal functorial Lefschetz invariant for endomorphisms of finite CW-complexes in terms of Grothendieck groups of endomorphisms of finitely generated free modules. It encompasses invariants like Lefschetz number, its generalization to the Lefschetz invariant, Nielsen number and L 2 -torsion of mapping tori. We examine its behaviour under fibrations.

The Vietoris system in strong shape and strong homology

Bernd Günther (1992)

Fundamenta Mathematicae

We show that the Vietoris system of a space is isomorphic to a strong expansion of that space in the Steenrod homotopy category, and from this we derive a simple description of strong homology. It is proved that in ZFC strong homology does not have compact supports, and that enforcing compact supports by taking limits leads to a homology functor that does not factor over the strong shape category. For compact Hausdorff spaces strong homology is proved to be isomorphic to Massey's homology.

Currently displaying 281 – 300 of 328