Previous Page 2

Displaying 21 – 34 of 34

Showing per page

Homotopy decompositions of orbit spaces and the Webb conjecture

Jolanta Słomińska (2001)

Fundamenta Mathematicae

Let p be a prime number. We prove that if G is a compact Lie group with a non-trivial p-subgroup, then the orbit space ( B p ( G ) ) / G of the classifying space of the category associated to the G-poset p ( G ) of all non-trivial elementary abelian p-subgroups of G is contractible. This gives, for every G-CW-complex X each of whose isotropy groups contains a non-trivial p-subgroup, a decomposition of X/G as a homotopy colimit of the functor X E / ( N E . . . N E ) defined over the poset ( s d p ( G ) ) / G , where sd is the barycentric subdivision. We also...

Homotopy representability of Brauer groups.

Antonio Martínez Cegarra (1999)

Extracta Mathematicae

The purpose of this paper is to present certain facts and results showing a way through which simplicial homotopy theory can be used in the study of Auslander-Goldman-Brauer groups of Azumaya algebras over commutative rings.

Homotopy theory of the master equation package applied to algebra and geometry: a sketch of two interlocking programs

Dennis Sullivan (2009)

Banach Center Publications

Using the algebraic theory of homotopies between maps of dga's we obtain a homotopy theory for algebraic structures defined by collections of multiplications and comultiplications. This is done by expressing these structures and resolved versions of them in terms of dga maps. This same homotopy theory of dga maps applies to extract invariants beyond homological periods from systems of moduli spaces that determine systems of chains that satisfy master equations like dX + X*X = 0. Minimal models of...

Currently displaying 21 – 34 of 34

Previous Page 2