Displaying 101 – 120 of 164

Showing per page

Pruning theory and Thurston's classification of surface homeomorphisms

André de Carvalho, Toby Hall (2001)

Journal of the European Mathematical Society

Two dynamical deformation theories are presented – one for surface homeomorphisms, called pruning, and another for graph endomorphisms, called kneading – both giving conditions under which all of the dynamics in an open set can be destroyed, while leaving the dynamics unchanged elsewhere. The theories are related to each other and to Thurston’s classification of surface homeomorphisms up to isotopy.

Quelques problèmes d'homotopie et d'isotopie dans les variétés de dimension 3 non irréductibles

François Laudenbach (1973)

Annales de l'institut Fourier

Cette note résume une étude sur la comparaison des relations d’homotopie et d’isotopie dans les problèmes suivants : disjonction de deux sphères plongées, plongement de sphères dans une variété de dimension 3 satisfaisant à la conjecture de Poincaré. On mentionne une application aux décompositions en anses des variétés de dimension 4.

Currently displaying 101 – 120 of 164