Presentations for the punctured mapping class groups in terms of Artin groups.
Two dynamical deformation theories are presented – one for surface homeomorphisms, called pruning, and another for graph endomorphisms, called kneading – both giving conditions under which all of the dynamics in an open set can be destroyed, while leaving the dynamics unchanged elsewhere. The theories are related to each other and to Thurston’s classification of surface homeomorphisms up to isotopy.
Cette note résume une étude sur la comparaison des relations d’homotopie et d’isotopie dans les problèmes suivants : disjonction de deux sphères plongées, plongement de sphères dans une variété de dimension 3 satisfaisant à la conjecture de Poincaré. On mentionne une application aux décompositions en anses des variétés de dimension 4.