A universal bound for surfaces in 3-manifolds with a given Heegaard genus.
In this paper we show that given any 3-manifold and any non-fibered class in there exists a representation such that the corresponding twisted Alexander polynomial is zero. We obtain this result by extending earlier work of ours and by combining this with recent results of Agol and Wise on separability of 3-manifold groups. This result allows us to completely classify symplectic 4-manifolds with a free circle action, and to determine their symplectic cones.
Within geometric topology of 3-manifolds (with or without boundary), a representation theory exists, which makes use of 4-coloured graphs. Aim of this paper is to translate the homeomorphism problem for the represented manifolds into an equivalence problem for 4-coloured graphs, by means of a finite number of graph-moves, called dipole moves. Moreover, interesting consequences are obtained, which are related with the same problem in the n-dimensional setting.