Harmonic morphisms and circle actions on 3- and 4-manifolds
Harmonic morphisms are considered as a natural generalization of the analytic functions of Riemann surface theory. It is shown that any closed analytic 3-manifold supporting a non-constant harmonic morphism into a Riemann surface must be a Seifert fibre space. Harmonic morphisms from a closed 4-manifold to a 3-manifold are studied. These determine a locally smooth circle action on with possible fixed points. This restricts the topology of . In all cases, a harmonic morphism from a closed...