Hyperplane complements of large type.
On donne une construction géométrique d’invariants généralisant la classe de Maslov-Arnold d’une immersion lagrangienne dans un fibré cotangent et l’indice de Maslov-Arnold-Leray d’une immersion lagrangienne -orientée dans : la classe de Maslov-Arnold universelle d’un fibré symplectique et l’indice de Maslov-Arnold-Leray d’un fibré -symplectique, c’est-à-dire dont le groupe structural est le revêtement à feuillets de . Tout ceci relève d’une situation géométrique générale dans laquelle s’introduisent...
We study self-homotopy equivalences and diffeomorphisms of the (n+1)-dimensional manifold X= #p(S1 x Sn) for any n ≥ 3. Then we completely determine the group of pseudo-isotopy classes of homeomorphisms of X and extend to dimension n well-known theorems due to F. Laudenbach and V. Poenaru (1972,1973), and J. M. Montesinos (1979).