Displaying 41 – 60 of 88

Showing per page

Non abelian Reidemeister torsion and volume form on the SU(2)-representation space of knot groups

Jérôme Dubois (2005)

Annales de l’institut Fourier

For a knot K in the 3-sphere and a regular representation of its group G K into SU(2) we construct a non abelian Reidemeister torsion form on the first twisted cohomology group of the knot exterior. This non abelian Reidemeister torsion form provides a volume form on the SU(2)-representation space of G K . In another way, we construct using Casson’s original construction a natural volume form on the SU(2)-representation space of G K . Next, we compare these two apparently different points of view on the representation...

On a volume element of a Hitchin component

Yaşar Sözen (2012)

Fundamenta Mathematicae

Let Σ be a closed oriented Riemann surface of genus at least 2. By using symplectic chain complex, we construct a volume element for a Hitchin component of Hom(π₁(Σ),PSLₙ(ℝ))/PSLₙ(ℝ) for n > 2.

Currently displaying 41 – 60 of 88