A correction to a paper of H. King.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Page 1
L. Reid (1987)
Inventiones mathematicae
Dubois, Jérôme, Korepanov, Igor G., Martyushev, Evgeniy V. (2010)
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
T. A. Chapman (1983)
Compositio Mathematica
C. R. Guilbault (2001)
Fundamenta Mathematicae
We construct a locally compact 2-dimensional polyhedron X which does not admit a 𝒵-compactification, but which becomes 𝒵-compactifiable upon crossing with the Hilbert cube. This answers a long-standing question posed by Chapman and Siebenmann in 1976 and repeated in the 1976, 1979 and 1990 versions of Open Problems in Infinite-Dimensional Topology. Our solution corrects an error in the 1990 problem list.
Yoshikazu Yamaguchi (2008)
Annales de l’institut Fourier
We show a relationship between the non-acyclic Reidemeister torsion and a zero of the acyclic Reidemeister torsion for a -regular or -representation of a knot group. Then we give a method to calculate the non-acyclic Reidemeister torsion of a knot exterior. We calculate a new example and investigate the behavior of the non-acyclic Reidemeister torsion associated to a -bridge knot and -representations of its knot group.
Allan J. Sieradski (1977)
Mathematische Zeitschrift
Sylvain E. Cappell (1976)
Inventiones mathematicae
P. Doyle (1975)
Fundamenta Mathematicae
A. Cavicchioli, Y. V. Muranov, D. Repovš (2001)
Bollettino dell'Unione Matematica Italiana
In questo articolo si riassumono le definizioni e le principali proprietà dei gruppi di ostruzione con decorazione di tipo LS e LP. Si stabiliscono nuove relazioni fra questi gruppi e si descrivono le proprietà delle mappe naturali fra differenti gruppi con decorazione. Si costruiscono varie successioni spettrali, contenenti questi gruppi con decorazione, e si studiano la loro connessione con le successioni spettrali in -teoria per certe estensioni quadratiche di antistrutture. Infine, si introduce...
J.B. Wagoner, F.T. Farrell (1972)
Commentarii mathematici Helvetici
Mel Rothenberg, Triantafillou Georgia (1984)
Mathematische Annalen
Gwénaël Massuyeau (2011)
Annales mathématiques Blaise Pascal
These notes accompany some lectures given at the autumn school “Tresses in Pau” in October 2009. The abelian Reidemeister torsion for -manifolds, and its refinements by Turaev, are introduced. Some applications, including relations between the Reidemeister torsion and other classical invariants, are surveyed.
D. Burghelea, L. Friedlander (1996)
Geometric and functional analysis
Henning Hausschild (1978/1979)
Manuscripta mathematica
Page 1