On the shape of pointed compact connected subsets of
We classify the genus one compact (PL) 5-manifolds and prove some results about closed 5-manifolds with free fundamental group. In particular, let be a closed connected orientable smooth -manifold with free fundamental group. Then we prove that the number of distinct smooth -manifolds homotopy equivalent to equals the -nd Betti number (mod ) of .
We present a characterization of those open n-manifolds (n ≥ 5) whose products with the real line are homeomorphic to interiors of compact (n+1)-manifolds with boundary.
It is proved that two planes that are properly homotopic in a noncompact, orientable, irreducible 3-manifold that is not homeomorphic to are isotopic. The end-reduction techniques of E. M. Brown and C. D. Feustal and M. G. Brin and T. L. Thickstun are used.