Displaying 21 – 40 of 47

Showing per page

Straightening cell decompositions of cusped hyperbolic 3-manifolds

Marina Pescini (1998)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Let M be an oriented cusped hyperbolic 3-manifold and let τ be a topological ideal triangulation of M . We give a characterization for τ to be isotopic to an ideal geodesic triangulation; moreover we give a characterization for τ to flatten into a partially flat triangulation. Finally we prove that straightening combinatorially equivalent topological ideal cell decompositions gives the same geodesic decomposition, up to isometry.

Submanifolds of codimension two and homology equivalent manifolds

Sylvain E. Cappell, Julius L. Shaneson (1973)

Annales de l'institut Fourier

In this paper new methods of studying codimension two embeddings of manifolds are outlined. Results are stated on geometric periodicity of knot cobordism. The group of local knots of a manifold in a 2-plane bundle is introduced and computed, and applied to C o -close embeddings. General codimension two splitting theorems are discussed, with applications to equivariant knots and knot cobordism. A general existence theorem for P.L. (non-locally flat) embeddings is also given.The methods involve some...

Currently displaying 21 – 40 of 47