Homotopy 's with several symplectic structures.
The article is devoted to a generalization of Clifford and Grassmann algebras for the case of vector spaces over the field of complex numbers. The geometric interpretation of such generalizations are presented. Multieuclidean geometry is considered as well as the importance of it in physics.
We discuss Taubes' idea to perturb the monopole equations on symplectic manifolds to compute the Seiberg-Witten invariants in the light of Witten's symmetry trick in the Kähler case.
Let ξ be an oriented 8-dimensional vector bundle. We prove that the structure group SO(8) of ξ can be reduced to Sp(2) or Sp(2) · Sp(1) if and only if the vector bundle associated to ξ via a certain outer automorphism of the group Spin(8) has 3 linearly independent sections or contains a 3-dimensional subbundle. Necessary and sufficient conditions for the existence of an Sp(2)- structure in ξ over a closed connected spin manifold of dimension 8 are also given in terms of characteristic classes.