The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A construction of the noncommutative-geometric counterparts of classical classifying spaces is presented, for general compact matrix quantum structure groups. A quantum analogue of the classical concept of the classifying map is introduced and analyzed. Interrelations with the abstract algebraic theory of quantum characteristic classes are discussed. Various non-equivalent approaches to defining universal characteristic classes are outlined.
A general theory of characteristic classes of quantum principal bundles is presented, incorporating basic ideas of classical Weil theory into the conceptual framework of noncommutative differential geometry. A purely cohomological interpretation of the Weil homomorphism is given, together with a geometrical interpretation via quantum invariant polynomials. A natural spectral sequence is described. Some interesting quantum phenomena appearing in the formalism are discussed.
Currently displaying 1 –
5 of
5