Derivations on the restricted Nijenhuis-Schouten bracket algebra
On étudie dans cet article les champs de vecteurs de classe sur les surfaces compactes éventuellement à bord. On montre que si les singularités sont des selles sans liaison entre elles, s’il n’y a pas de feuille compacte intérieure et si le champ est transverse au bord, la surface admet une décomposition canonique. Suivant les cas cette décomposition comporte au plus trois ou quatre composantes. L’une est orientable sans bord, l’une est non orientable sans bord et il reste soit une composante...
We give a meaning to derivative of a function , where is a complete metric space. This enables us to investigate differential equations in a metric space. One can prove in particular Gronwall’s Lemma, Peano and Picard Existence Theorems, Lyapunov Theorem or Nagumo Theorem in metric spaces. The main idea is to define the tangent space of . Let , be continuous at zero. Then by the definition and are in the same equivalence class if they are tangent at zero, that is if By we denote...
Let N be a closed orientable n-manifold, n ≥ 3, and K a compact non-empty subset. We prove that the existence of a transversally orientable codimension one foliation on N∖K with leaves homeomorphic to , in the relative topology, implies that K must be connected. If in addition one imposes some restrictions on the homology of K, then N must be a homotopy sphere. Next we consider C² actions of a Lie group diffeomorphic to on N and obtain our main result: if K, the set of singular points of the...