On the Floer homology of plumbed three-manifolds.
We construct a version of rational Symplectic Field Theory for pairs , where is an exact symplectic manifold, where is an exact Lagrangian submanifold with components subdivided into subsets, and where both and have cylindrical ends. The theory associates to a -graded chain complex of vector spaces over , filtered with filtration levels. The corresponding -level spectral sequence is invariant under deformations of and has the following property: if is obtained by joining a...
We discuss the gluing principle in Morse-Floer homology and show that there is a gap in the traditional proof of the converse gluing theorem. We show how this gap can be closed by the use of a uniform tubular neighborhood theorem. The latter result is only stated here. Details are given in the authors' paper, Tubular neighborhoods and the Gluing Principle in Floer homology theory, to appear.