O(2) action on the 5-sphere.
We show that coefficients of residue formulas for characteristic numbers associated to a smooth toral action on a manifold can be taken in a quotient field This yields canonical identities over the integers and, reducing modulo two, residue formulas for Stiefel Whitney numbers.
We revisit the linearization theorems for proper Lie groupoids around general orbits (statements and proofs). In the fixed point case (known as Zung’s theorem) we give a shorter and more geometric proof, based on a Moser deformation argument. The passage to general orbits (Weinstein) is given a more conceptual interpretation: as a manifestation of Morita invariance. We also clarify the precise statements of the Linearization Theorem (there has been some confusion on this, which has propagated throughout...
The orbit projection of a proper -manifold is a fibration if and only if all points in are regular. Under additional assumptions we show that is a quasifibration if and only if all points are regular. We get a full answer in the equivariant category: is a -quasifibration if and only if all points are regular.