Homogeneous C R-manifolds.
The Koszul complex, as introduced in 1950, was a differential graded algebra which modelled a principal fibre bundle. Since then it has been an effective tool, both in algebra and in topology, for the calculation of homological and homotopical invariants. After a partial summary of these results we recall more recent generalizations of this complex, and some applications.
Este artículo presenta un panorama de algunos resultados recientes sobre estructuras complejas nilpotentes J definidas sobre nilvariedades compactas. Tratamos el problema de clasificación de nilvariedades compactas que admiten una tal J, el estudio de un modelo minimal de Dolbeault y su formalidad, y la construcción de estructuras complejas nilpotentes para las cuales la sucesión espectral de Frölicher no colapsa en el segundo término.
Let G be a compact connected Lie group and p: E → ΣA be a principal G-bundle with a characteristic map α: A → G, where A = ΣA₀ for some A₀. Let with F₀ = ∗, F₁ = ΣK₁ and Fₘ ≃ G be a cone-decomposition of G of length m and F’₁ = ΣK’₁ ⊂ F₁ with K’₁ ⊂ K₁ which satisfy up to homotopy for all i. Then cat(E) ≤ m + 1, under suitable conditions, which is used to determine cat(SO(10)). A similar result was obtained by Kono and the first author (2007) to determine cat(Spin(9)), but that result could not...
We propose a Givental-type stationary phase integral representation for the restricted Grm,N-Whittaker function, which is expected to describe the (S 1×U N)-equivariant Gromov-Witten invariants of the Grassmann variety Grm,N. Our key tool is a generalization of the Whittaker model for principal series U(gl N)-modules, and its realization in the space of functions of totally positive unipotent matrices. In particular, our construction involves a representation theoretic derivation of the Batyrev-Ciocan-Fontanine-Kim-van...
We give a lower bound for the bottom of the differential form spectrum on hyperbolic manifolds, generalizing thus a well-known result due to Sullivan and Corlette in the function case. Our method is based on the study of the resolvent associated with the Hodge-de Rham laplacian and leads to applications for the (co)homology and topology of certain classes of hyperbolic manifolds.
For a compact connected semisimple Lie group we shall prove two results (both related with Singhof’s paper [13]) on the Lusternik-Schnirelmann category of the adjoint orbits of , respectively the 1-dimensional relative category of a maximal torus in . The techniques will be classical, but we shall also apply some basic results concerning the so-called -category (cf. [14]).