Displaying 121 – 140 of 190

Showing per page

On embedding curves in surfaces

Bajguz, W. (2001)

Proceedings of the 20th Winter School "Geometry and Physics"

Contrary to a statement of Borsuk the author proves that every locally plane Peano continuum is embeddable into a 2-manifold.

On Gelfand-Zetlin modules

Drozd, Yu. A., Ovsienko, S. A., Futorny, V. M. (1991)

Proceedings of the Winter School "Geometry and Physics"

[For the entire collection see Zbl 0742.00067.]Let 𝔤 k be the Lie algebra 𝔤 l ( k , 𝒞 ) , and let U k be the universal enveloping algebra for 𝔤 k . Let Z k be the center of U k . The authors consider the chain of Lie algebras 𝔤 n 𝔤 n - 1 𝔤 1 . Then Z = Z k k = 1 , 2 , n is an associative algebra which is called the Gel’fand-Zetlin subalgebra of U n . A 𝔤 n module V is called a G Z -module if V = x V ( x ) , where the summation is over the space of characters of Z and V ( x ) = { v V ( a - x ( a ) ) m v = 0 , m 𝒵 + , a 𝒵 } . The authors describe several properties of G Z - modules. For example, they prove that if V ( x ) = 0 for some x ...

On geodesic mappings of special Finsler spaces

Bácsó, Sándor (1999)

Proceedings of the 18th Winter School "Geometry and Physics"

The author previously studied with F. Ilosvay and B. Kis [Publ. Math. 42, 139-144 (1993; Zbl 0796.53022)] the diffeomorphisms between two Finsler spaces F n = ( M n , L ) and F ¯ n = ( M n , L ¯ ) which map the geodesics of F n to geodesics of F ¯ n (geodesic mappings).Now, he investigates the geodesic mappings between a Finsler space F n and a Riemannian space ¯ n . The main result of this paper is as follows: if F n is of constant curvature K and the mapping F n ¯ n is a strongly geodesic mapping then K = 0 or K 0 and L ¯ = e ϕ ( x ) L .

On quasijet bundles

Tomáš, Jiří (2000)

Proceedings of the 19th Winter School "Geometry and Physics"

In this paper a Weil approach to quasijets is discussed. For given manifolds M and N , a quasijet with source x M and target y N is a mapping T x r M T y r N which is a vector homomorphism for each one of the r vector bundle structures of the iterated tangent bundle T r [A. Dekrét, Casopis Pest. Mat. 111, No. 4, 345-352 (1986; Zbl 0611.58004)]. Let us denote by Q J r ( M , N ) the bundle of quasijets from M to N ; the space J ˜ r ( M , N ) of non-holonomic r -jets from M to N is embeded into Q J r ( M , N ) . On the other hand, the bundle Q T m r N of ( m , r ) -quasivelocities...

On sectioning multiples of the nontrivial line bundle over Grassmannians

Horanská, Ľubomíra (1998)

Proceedings of the 17th Winter School "Geometry and Physics"

Let G n , k ( G ˜ n , k ) denote the Grassmann manifold of linear k -spaces (resp. oriented k -spaces) in n , d n , k = k ( n - k ) = dim G n , k and suppose n 2 k . As an easy consequence of the Steenrod obstruction theory, one sees that ( d n , k + 1 ) -fold Whitney sum ( d n , k + 1 ) ξ n , k of the nontrivial line bundle ξ n , k over G n , k always has a nowhere vanishing section. The author deals with the following question: What is the least s ( = s n , k ) such that the vector bundle s ξ n , k admits a nowhere vanishing section ? Obviously, s n , k d n , k + 1 , and for the special case in which k = 1 , it is known that s n , 1 = d n , 1 + 1 . Using results...

On some relations between curvature and metric tensors in Riemannian spaces

Mikeš, Josef, Laitochová, Jitka, Pokorná, Olga (2000)

Proceedings of the 19th Winter School "Geometry and Physics"

The paper generalizes results of H. H. Hacisalihoglu and A. Kh. Amirov [Dokl. Akad. Nauk, Ross. Akad. Nauk 351, No. 3, 295-296 (1996; Zbl 0895.53038) and Sib. Mat. Zh. 39, No. 4, 1005-1012 (1998; Zbl 0913.53019)] on the existence and uniqueness of a Riemannian metric on a domain in n given prescribed values for some of the components of the Riemann curvature tensor and initial values of the metric and its partial derivatives. The authors establish the construction (existence and uniqueness) of a...

On sprays and connections

Kozma, László (1990)

Proceedings of the Winter School "Geometry and Physics"

[For the entire collection see Zbl 0699.00032.] A connection structure (M,H) and a path structure (M,S) on the manifold M are called compatible, if S ( v ) = H ( v , v ) , v T M , locally G i ( x , y ) = y j Γ j i ( x , y ) , where G i and Γ j i express the semi-spray S and the connection map H, resp. In the linear case of H its geodesic spray S is quadratic: G i ( x , y ) = Γ j k i ( k ) y j y k . On the contrary, the homogeneity condition of S induces the relation for the compatible connection H, y j ( Γ j i μ t ) = t y j Γ j i , whence it follows not that H is linear, i.e. if a connection structure is compatible with a spray, then...

On the compactification of configuration spaces

Markl, Martin, Stasheff, James D. (1998)

Proceedings of the 17th Winter School "Geometry and Physics"

The article contains a list of 7 problems related to operads and configuration spaces. Problems 1-2 are about the compactification of configuration spaces (homology and Koszulness, geometric decompositions). Problems 3-4 are about configuration spaces related to knot invariants, their geometry and Koszulness. Problems 5 to 7 are related to (operadically defined) traces and cyclic homology.

On the conformal relation between twistors and Killing spinors

Friedrich, Thomas (1990)

Proceedings of the Winter School "Geometry and Physics"

[For the entire collection see Zbl 0699.00032.] The author considers the conformal relation between twistors and spinors on a Riemannian spin manifold of dimension n 3 . A first integral is constructed for a twistor spinor and various geometric properties of the spin manifold are deduced. The notions of a conformal deformation and a Killing spinor are considered and such a deformation of a twistor spinor into a Killing spinor and conditions for the equivalence of these quantities is indicated.

On the flux homomorphism for regular Poisson manifolds

Rybicki, Tomasz (1998)

Proceedings of the 17th Winter School "Geometry and Physics"

Author’s abstract: “We introduce the concept of the flux homomorphism for regular Poisson manifolds. First we establish a one-to-one correspondence between Poisson diffeomorphisms close to i d and closed foliated 1-forms close to 0. This allows to show that the group of Poisson automorphisms is locally contractible and to define the flux locally. Then, by means of the foliated cohomology, we extend this local homomorphism to a global one”.

On the horizontal cohomology with general coefficients

Marvan, Michal (1990)

Proceedings of the Winter School "Geometry and Physics"

[For the entire collection see Zbl 0699.00032.] A new cohomology theory suitable for understanding of nonlinear partial differential equations is presented. This paper is a continuation of the following paper of the author [Differ. geometry and its appl., Proc. Conf., Brno/Czech. 1986, Commun., 235-244 (1987; Zbl 0629.58033)].

On the invariant variational sequences in mechanics

Šeděnková, Jana (2003)

Proceedings of the 22nd Winter School "Geometry and Physics"

Summary: The r -th order variational sequence is the quotient sequence of the De Rham sequence on the r th jet prolongation of a fibered manifold, factored through its contact subsequence.In this paper, the first order variational sequence on a fibered manifold with one-dimensional base is considered. A new representation of all quotient spaces as some spaces of (global) forms is given. The factorization procedure is based on a modification of the interior Euler operator, used in the theory of (infinite)...

Currently displaying 121 – 140 of 190