Displaying 241 – 260 of 534

Showing per page

A regularity lemma for functions of several variables.

Jean L. Journé (1988)

Revista Matemática Iberoamericana

We shall prove the following Theorem. Let Fs and Fu be two continuous transverse foliations with uniformly smooth leaves, of some manifold. If f is uniformly smooth along the leaves of Fs and Fu, then f is smooth.

A remark on the local Lipschitz continuity of vector hysteresis operators

Pavel Krejčí (2001)

Applications of Mathematics

It is known that the vector stop operator with a convex closed characteristic Z of class C 1 is locally Lipschitz continuous in the space of absolutely continuous functions if the unit outward normal mapping n is Lipschitz continuous on the boundary Z of Z . We prove that in the regular case, this condition is also necessary.

A representation of the coalgebra of derivations for smooth spaces

Fischer, Gerald (1999)

Proceedings of the 18th Winter School "Geometry and Physics"

Let K be a field. The generalized Leibniz rule for higher derivations suggests the definition of a coalgebra 𝒟 K k for any positive integer k . This is spanned over K by d 0 , ... , d k , and has comultiplication Δ and counit ε defined by Δ ( d i ) = j = 0 i d j d i - j and ε ( d i ) = δ 0 , i (Kronecker’s delta) for any i . This note presents a representation of the coalgebra 𝒟 K k by using smooth spaces and a procedure of microlocalization. The author gives an interpretation of this result following the principles of the quantum theory of geometric spaces.

Currently displaying 241 – 260 of 534