A convexity theorem for Poisson actions of compact Lie groups
We construct a two dimensional foliation with dense leaves on the Heisenberg nilmanifold for which smooth leafwise Hodge decomposition does not hold. It is also shown that a certain type of dynamical trace formulas relating periodic orbits with traces on leafwise cohomologies does not hold for arbitrary flows.
In this paper, two deformation lemmas concerning a family of indefinite, non necessarily continuously differentiable functionals are proved. A critical point theorem, which extends the classical result of Benci-Rabinowitz [14, Theorem 5.29] to the above-mentioned setting, is then deduced.
In this paper the symmetric differential and symmetric Lie derivative are introduced. Using these tools derivations of the algebra of symmetric tensors are classified. We also define a Frölicher-Nijenhuis bracket for vector valued symmetric tensors.