Poisson structures on Weil bundles.
Let 𝓟𝓑 be the category of principal bundles and principal bundle homomorphisms. We describe completely the product preserving gauge bundle functors (ppgb-functors) on 𝓟𝓑 and their natural transformations in terms of the so-called admissible triples and their morphisms. Then we deduce that any ppgb-functor on 𝓟𝓑 admits a prolongation of principal connections to general ones. We also prove a "reduction" theorem for prolongations of principal connections into principal ones by means of Weil functors....
A complete description is given of all product preserving gauge bundle functors F on vector bundles in terms of pairs (A,V) consisting of a Weil algebra A and an A-module V with . Some applications of this result are presented.
Let be a natural bundle. We introduce the geometrical construction transforming two general connections into a general connection on the -vertical bundle. Then we determine all natural operators of this type and we generalize the result by IK̇olář and the second author on the prolongation of connections to -vertical bundles. We also present some examples and applications.
In this paper, denotes a smooth manifold of dimension , a Weil algebra and the associated Weil bundle. When is a Poisson manifold with -form , we construct the -Poisson form , prolongation on of the -Poisson form . We give a necessary and sufficient condition for that be an -Poisson manifold.