Page 1

Displaying 1 – 12 of 12

Showing per page

Natural maps depending on reductions of frame bundles

Ivan Kolář (2011)

Annales Polonici Mathematici

We clarify how the natural transformations of fiber product preserving bundle functors on m can be constructed by using reductions of the rth order frame bundle of the base, m being the category of fibered manifolds with m-dimensional bases and fiber preserving maps with local diffeomorphisms as base maps. The iteration of two general r-jet functors is discussed in detail.

Natural operations on holomorphic forms

A. Navarro, J. Navarro, C. Tejero Prieto (2018)

Archivum Mathematicum

We prove that the only natural differential operations between holomorphic forms on a complex manifold are those obtained using linear combinations, the exterior product and the exterior differential. In order to accomplish this task we first develop the basics of the theory of natural holomorphic bundles over a fixed manifold, making explicit its Galoisian structure by proving a categorical equivalence à la Galois.

Natural operators lifting vector fields to bundles of Weil contact elements

Miroslav Kureš, Włodzimierz M. Mikulski (2004)

Czechoslovak Mathematical Journal

Let A be a Weil algebra. The bijection between all natural operators lifting vector fields from m -manifolds to the bundle functor K A of Weil contact elements and the subalgebra of fixed elements S A of the Weil algebra A is determined and the bijection between all natural affinors on K A and S A is deduced. Furthermore, the rigidity of the functor K A is proved. Requisite results about the structure of S A are obtained by a purely algebraic approach, namely the existence of nontrivial S A is discussed.

Natural T -functions on the cotangent bundle of a Weil bundle

Jiří M. Tomáš (2004)

Czechoslovak Mathematical Journal

A natural T -function on a natural bundle F is a natural operator transforming vector fields on a manifold M into functions on F M . For any Weil algebra A satisfying dim M w i d t h ( A ) + 1 we determine all natural T -functions on T * T A M , the cotangent bundle to a Weil bundle T A M .

Natural transformations of the composition of Weil and cotangent functors

Miroslav Doupovec (2001)

Annales Polonici Mathematici

We study geometrical properties of natural transformations T A T * T * T A depending on a linear function defined on the Weil algebra A. We show that for many particular cases of A, all natural transformations T A T * T * T A can be described in a uniform way by means of a simple geometrical construction.

Natural vector fields and 2-vector fields on the tangent bundle of a pseudo-Riemannian manifold

Josef Janyška (2001)

Archivum Mathematicum

Let M be a differentiable manifold with a pseudo-Riemannian metric g and a linear symmetric connection K . We classify all natural (in the sense of [KMS]) 0-order vector fields and 2-vector fields on T M generated by g and K . We get that all natural vector fields are of the form E ( u ) = α ( h ( u ) ) u H + β ( h ( u ) ) u V , where u V is the vertical lift of u T x M , u H is the horizontal lift of u with respect to K , h ( u ) = 1 / 2 g ( u , u ) and α , β are smooth real functions defined on R . All natural 2-vector fields are of the form Λ ( u ) = γ 1 ( h ( u ) ) Λ ( g , K ) + γ 2 ( h ( u ) ) u H u V , where γ 1 , γ 2 are smooth real functions defined...

Non-existence of some natural operators on connections

W. M. Mikulski (2003)

Annales Polonici Mathematici

Let n,r,k be natural numbers such that n ≥ k+1. Non-existence of natural operators C r Q ( r e g T k r K k r ) and C r Q ( r e g T k r * K k r * ) over n-manifolds is proved. Some generalizations are obtained.

Non-holonomic ( r , s , q ) -jets

Jiří M. Tomáš (2006)

Czechoslovak Mathematical Journal

We generalize the concept of an ( r , s , q ) -jet to the concept of a non-holonomic ( r , s , q ) -jet. We define the composition of such objects and introduce a bundle functor J ˜ r , s , q k , l × defined on the product category of ( k , l ) -dimensional fibered manifolds with local fibered isomorphisms and the category of fibered manifolds with fibered maps. We give the description of such functors from the point of view of the theory of Weil functors. Further, we introduce a bundle functor J ˜ 1 r , s , q 2 - k , l defined on the category of 2 -fibered manifolds with k , l -underlying...

Currently displaying 1 – 12 of 12

Page 1