Lifting distributions to the cotangent bundle
A classification of all -natural operators lifting p-dimensional distributions D ⊂ TM on m-manifolds M to q-dimensional distributions A(D) ⊂ TT*M on the cotangent bundle T*M is given.
A classification of all -natural operators lifting p-dimensional distributions D ⊂ TM on m-manifolds M to q-dimensional distributions A(D) ⊂ TT*M on the cotangent bundle T*M is given.
We describe all -gauge-natural operators lifting right-invariant vector fields X on principal G-bundles P → M with m-dimensional bases into vector fields (X) on the rth order principal prolongation of P → M. In other words, we classify all -natural transformations covering the identity of , where is the r-jet prolongation of the Lie algebroid LP=TP/G of P, i.e. we find all -natural transformations which are similar to the Kumpera-Spencer isomorphism . We formulate axioms which characterize...
In a previous paper we have given a complete description of linear liftings of p-forms on n-dimensional manifolds M to q-forms on , where is a Weil functor, for all non-negative integers n, p and q, except the case p = n and q = 0. We now establish formulas connecting such liftings and the exterior derivative of forms. These formulas contain a boundary operator, which enables us to define a homology of the Weil algebra A. We next study the case p = n and q = 0 under the condition that A is acyclic....
The second order transverse bundle of a foliated manifold carries a natural structure of a smooth manifold over the algebra of truncated polynomials of degree two in one variable. Prolongations of foliated mappings to second order transverse bundles are a partial case of more general -smooth foliated mappings between second order transverse bundles. We establish necessary and sufficient conditions under which a -smooth foliated diffeomorphism between two second order transverse bundles maps...
We give a classification of all linear natural operators transforming affinors on each n-dimensional manifold M into affinors on , where is the product preserving bundle functor given by a Weil algebra A, under the condition that n ≥ 2.
The paper contains a classification of linear liftings of skew symmetric tensor fields of type on -dimensional manifolds to tensor fields of type on Weil bundles under the condition that It complements author’s paper “Linear liftings of symmetric tensor fields of type to Weil bundles” (Ann. Polon. Math. 92, 2007, pp. 13–27), where similar liftings of symmetric tensor fields were studied. We apply this result to generalize that of author’s paper “Affine liftings of torsion-free connections...
We define equivariant tensors for every non-negative integer and every Weil algebra and establish a one-to-one correspondence between the equivariant tensors and linear natural operators lifting skew-symmetric tensor fields of type on an -dimensional manifold to tensor fields of type on if . Moreover, we determine explicitly the equivariant tensors for the Weil algebras , where and are non-negative integers.
This paper contains a classification of all linear liftings of symmetric tensor fields of type (1,2) on n-dimensional manifolds to any tensor fields of type (1,2) on Weil bundles under the condition that n ≥ 3.
We give a classification of all linear natural operators transforming -vectors (i.e., skew-symmetric tensor fields of type ) on -dimensional manifolds to tensor fields of type on , where is a Weil bundle, under the condition that , and . The main result of the paper states that, roughly speaking, each linear natural operator lifting -vectors to tensor fields of type on is a sum of operators obtained by permuting the indices of the tensor products of linear natural operators lifting...