Semilinear equations, the function, and generalized Gauduchon metrics
In this paper, we generalize the Gauduchon metrics on a compact complex manifold and define the functions on the space of its hermitian metrics.
In this paper, we generalize the Gauduchon metrics on a compact complex manifold and define the functions on the space of its hermitian metrics.
, that is to say, Lorentzian manifolds with vanishing second derivative of the curvature tensor , are characterized by several geometric properties, and explicitly presented. Locally, they are a product where each factor is uniquely determined as follows: is a Riemannian symmetric space and is either a constant-curvature Lorentzian space or a definite type of plane wave generalizing the Cahen–Wallach family. In the proper case (i.e., at some point), the curvature tensor turns out to...
On étudie la structure naturelle d’algèbre de Lie de l’espace des sections de classe d’un fibré localement trivial dont la fibre-type est une algèbre de Lie ; on décrit, en particulier, ses dérivations et ses automorphismes. On détermine les algèbres de Lie pour lesquelles cette structure caractérise la structure différentiable de la base du fibré.