A Lagrange multiplier theorem and a sandwich theorem for convex relations.
The paper gives sufficient conditions for projections of certain pseudoconcave sets to be open. More specifically, it is shown that the range of an analytic set-valued function whose values are simply connected planar continua is open, provided there does not exist a point which belongs to boundaries of all the fibers. The main tool is a theorem on existence of analytic discs in certain polynomially convex hulls, obtained earlier by the author.