The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 1 of 1

Showing per page

On generalized “ham sandwich” theorems

Marek Golasiński (2006)

Archivum Mathematicum

In this short note we utilize the Borsuk-Ulam Anitpodal Theorem to present a simple proof of the following generalization of the “Ham Sandwich Theorem”: Let A 1 , ... , A m n be subsets with finite Lebesgue measure. Then, for any sequence f 0 , ... , f m of -linearly independent polynomials in the polynomial ring [ X 1 , ... , X n ] there are real numbers λ 0 , ... , λ m , not all zero, such that the real affine variety { x n ; λ 0 f 0 ( x ) + + λ m f m ( x ) = 0 } simultaneously bisects each of subsets A k , k = 1 , ... , m . Then some its applications are studied.

Currently displaying 1 – 1 of 1

Page 1