An analytical theory for optimal controls on Riemannian manifolds.
An elliptic PDE is studied which is a perturbation of an autonomous equation. The existence of a nontrivial solution is proven via variational methods. The domain of the equation is unbounded, which imposes a lack of compactness on the variational problem. In addition, a popular monotonicity condition on the nonlinearity is not assumed. In an earlier paper with this assumption, a solution was obtained using a simple application of topological (Brouwer) degree. Here, a more subtle degree...
A recent multiplicity result by Ricceri, stated for equations in Hilbert spaces, is extended to a wider class of Banach spaces. Applications to nonlinear boundary value problems involving the p-Laplacian are presented.
Let (x,u,∇u) be a Lagrangian periodic of period 1 in x1,...,xn,u. We shall study the non self intersecting functions u: RnR minimizing ; non self intersecting means that, if u(x0 + k) + j = u(x0) for some x0∈Rn and (k , j) ∈Zn × Z, then u(x) = u(x + k) + jx. Moser has shown that each of these functions is at finite distance from a plane u = ρx and thus has an average slope ρ; moreover, Senn has proven that it is possible to define the average action of u, which is usually called since...