Perfect Morse functions and some applications.
We study the existence of spatial periodic solutions for nonlinear elliptic equations where is a continuous function, nondecreasing w.r.t. . We give necessary and sufficient conditions for the existence of periodic solutions. Some cases with nonincreasing functions are investigated as well. As an application we analyze the mathematical model of electron beam focusing system and we prove the existence of positive periodic solutions for the envelope equation. We present also numerical simulations....
We study the existence of spatial periodic solutions for nonlinear elliptic equations where g is a continuous function, nondecreasing w.r.t. u. We give necessary and sufficient conditions for the existence of periodic solutions. Some cases with nonincreasing functions g are investigated as well. As an application we analyze the mathematical model of electron beam focusing system and we prove the existence of positive periodic solutions for the envelope equation. We present also numerical simulations. ...
By using the least action principle and minimax methods in critical point theory, some existence theorems for periodic solutions of second order Hamiltonian systems are obtained.
Two theorems about the existence of periodic solutions with prescribed energy for second order Hamiltonian systems are obtained. One gives existence for almost all energies under very natural conditions. The other yields existence for all energies under a further condition.
Some existence and multiplicity results for periodic solutions of second order nonautonomous systems with the potentials changing sign are presented. The proofs of the existence results rely on the use of a linking theorem and the Mountain Pass theorem by Ambrosetti and Rabinowitz [2]. The multiplicity results are deduced by the study of constrained critical points of minimum or Mountain Pass type.
The existence of solutions with prescribed period for a class of Hamiltonian systems with a Keplerian singularity is discussed.