Page 1

Displaying 1 – 5 of 5

Showing per page

On the Moser-Onofri and Prékopa-Leindler inequalities.

Alessandro Ghigi (2005)

Collectanea Mathematica

Using elementary convexity arguments involving the Legendre transformation and the Prékopa-Leindler inequality, we prove the sharp Moser-Onofri inequality, which says that1/16π ∫|∇φ|2 + 1/4π ∫ φ - log (1/4π ∫ eφ) ≥ 0for any funcion φ ∈ C∞(S2).

On the Paneitz energy on standard three sphere

Paul Yang, Meijun Zhu (2004)

ESAIM: Control, Optimisation and Calculus of Variations

We prove that the Paneitz energy on the standard three-sphere S 3 is bounded from below and extremal metrics must be conformally equivalent to the standard metric.

On the Paneitz energy on standard three sphere

Paul Yang, Meijun Zhu (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We prove that the Paneitz energy on the standard three-sphere S3 is bounded from below and extremal metrics must be conformally equivalent to the standard metric.

Currently displaying 1 – 5 of 5

Page 1