Tensorial version of the calculus of variations.
We define suitable Sobolev topologies on the space of connections of bounded geometry and finite Yang-Mills action and the gauge group and show that the corresponding configuration space is a stratified space. The underlying open manifold is assumed to have bounded geometry.
We consider the gradient flow of the Yang–Mills–Higgs functional of Higgs pairs on a Hermitian vector bundle over a Kähler surface , and study the asymptotic behavior of the heat flow for Higgs pairs at infinity. The main result is that the gradient flow with initial condition converges, in an appropriate sense which takes into account bubbling phenomena, to a critical point of this functional. We also prove that the limiting Higgs pair can be extended smoothly to a vector bundle over...
The geometric description of Yang–Mills theories and their configuration space is reviewed. The presence of singularities in M is explained and some of their properties are described. The singularity structure is analysed in detail for structure group SU(2). This review is based on [28].