À propos des deuxième et troisième espaces de cohomologie de l'algèbre de Lie de Poisson d'une variété symplectique
Page 1 Next
M. De Wilde, P. Lecomte, S. Gutt (1984)
Annales de l'I.H.P. Physique théorique
Saroop Kaul (1987)
Fundamenta Mathematicae
Jun-Muk Hwang (2007)
Annales scientifiques de l'École Normale Supérieure
Jun-Muk Hwang, Ngaiming Mok (2002)
Annales scientifiques de l'École Normale Supérieure
Guy Patissier (1979)
Annales de l'I.H.P. Physique théorique
Marius Crainic, Ieke Moerdijk (2008)
Journal of the European Mathematical Society
We introduce a new cohomology for Lie algebroids, and prove that it provides a differential graded Lie algebra which “controls” deformations of the structure bracket of the algebroid.
P. Tukia (1985)
Inventiones mathematicae
N. Koiso (1983)
Inventiones mathematicae
Barbot, Thierry (2001)
Geometry & Topology
Andreas Čap (2008)
Journal of the European Mathematical Society
We show that infinitesimal automorphisms and infinitesimal deformations of parabolic geometries can be nicely described in terms of the twisted de Rham sequence associated to a certain linear connection on the adjoint tractor bundle. For regular normal geometries, this description can be related to the underlying geometric structure using the machinery of BGG sequences. In the locally flat case, this leads to a deformation complex, which generalizes the well known complex for locally conformally...
Albert Fathi, L. Flaminio (1993)
Annales de l'institut Fourier
We study deformations of compact Riemannian manifolds of negative curvature. We give an equation for the infinitesimal conjugacy between geodesic flows. This in turn allows us to compute derivatives of intersection of metrics. As a consequence we obtain a proof of a theorem of Wolpert.
Ziv Ran (2012)
Open Mathematics
We introduce a notion of Jacobi-Bernoulli cohomology associated to a semi-simplicial Lie algebra (SELA). For an algebraic scheme X over ℂ, we construct a tangent SELA J X and show that the Jacobi-Bernoulli cohomology of J X is related to infinitesimal deformations of X.
Mitsuhiro Itoh (1993)
Mathematische Annalen
Frigerio, Roberto (2006)
Algebraic & Geometric Topology
Jürgen Bingener (1983)
Mathematische Zeitschrift
Jan Chrastina (1989)
Časopis pro pěstování matematiky
Lu, Zhiqin (2002)
Portugaliae Mathematica. Nova Série
L. Wojtczak, A. Urbaniak-Kucharczyk, I. Zasada, J. Rutkowski (1996)
Banach Center Publications
The physical properties of particles and phasesare considered in connection with their description by means of the deformation of space-time. The analogy between particle trajectories and phase boundaries is discussed. The geometry and its curvature is related to the Clifford algebraic structure whose construction in terms of the theory of deformation leads to the expected solutions for correlation functions referring to spectroscopy and scattering problems. The stochastic nature of space-time is...
Yvette Kosmann-Schwarzbach, Franco Magri (1990)
Annales de l'I.H.P. Physique théorique
Jun-Muk Hwang (1997)
Journal für die reine und angewandte Mathematik
Page 1 Next