Previous Page 8

Displaying 141 – 157 of 157

Showing per page

Truncated Lie groups and almost Klein models

Georges Giraud, Michel Boyom (2004)

Open Mathematics

We consider a real analytic dynamical system G×M→M with nonempty fixed point subset M G. Using symmetries of G×M→M, we give some conditions which imply the existence of transitive Lie transformation group with G as isotropy subgroup.

Une généralisation du théorème de Myers-Steenrod aux pseudogroupes d'isométries

Éliane Salem (1988)

Annales de l'institut Fourier

On montre que tout pseudogroupe d’isométries locales d’une variété riemannienne, qui est complet et fermé pour la topologie C 1 est un pseudogroupe de Lie. Ce résultat généralise au cas des pseudogroupes le théorème de S. Myers et N. Steenrod selon lequel le groupe des isométries d’une variété riemannienne est un groupe de Lie.

Universal lifting theorem and quasi-Poisson groupoids

David Inglesias-Ponte, Camille Laurent-Gengoux, Ping Xu (2012)

Journal of the European Mathematical Society

We prove the universal lifting theorem: for an α -simply connected and α -connected Lie groupoid Γ with Lie algebroid A , the graded Lie algebra of multi-differentials on A is isomorphic to that of multiplicative multi-vector fields on Γ . As a consequence, we obtain the integration theorem for a quasi-Lie bialgebroid, which generalizes various integration theorems in the literature in special cases. The second goal of the paper is the study of basic properties of quasi-Poisson groupoids. In particular,...

Variétés anti-de Sitter de dimension 3 exotiques

François Salein (2000)

Annales de l'institut Fourier

Le but de cet article est d’exposer de nouveaux exemples de structures anti-de Sitter sur des fibrés en cercles au-dessus d’une surface hyperbolique qui ne sont pas, modulo revêtement et quotient finis, des déformations de structures homogènes.

Vector form brackets in Lie algebroids

Albert Nijenhuis (1996)

Archivum Mathematicum

A brief exposition of Lie algebroids, followed by a discussion of vector forms and their brackets in this context - and a formula for these brackets in “deformed” Lie algebroids.

Weitzenböck Formula on Lie Algebroids

Bogdan Balcerzak, Jerzy Kalina, Antoni Pierzchalski (2012)

Bulletin of the Polish Academy of Sciences. Mathematics

A Weitzenböck formula for the Laplace-Beltrami operator acting on differential forms on Lie algebroids is derived.

Currently displaying 141 – 157 of 157

Previous Page 8