Théorie des groupoïdes symplectiques
We introduce an explicit procedure to generate natural operators on manifolds with almost Hermitian symmetric structures and work out several examples of this procedure in the case of almost Grassmannian structures.
We consider a real analytic dynamical system G×M→M with nonempty fixed point subset M G. Using symmetries of G×M→M, we give some conditions which imply the existence of transitive Lie transformation group with G as isotropy subgroup.
On montre que tout pseudogroupe d’isométries locales d’une variété riemannienne, qui est complet et fermé pour la topologie est un pseudogroupe de Lie. Ce résultat généralise au cas des pseudogroupes le théorème de S. Myers et N. Steenrod selon lequel le groupe des isométries d’une variété riemannienne est un groupe de Lie.
We prove the universal lifting theorem: for an -simply connected and -connected Lie groupoid with Lie algebroid , the graded Lie algebra of multi-differentials on is isomorphic to that of multiplicative multi-vector fields on . As a consequence, we obtain the integration theorem for a quasi-Lie bialgebroid, which generalizes various integration theorems in the literature in special cases. The second goal of the paper is the study of basic properties of quasi-Poisson groupoids. In particular,...
Le but de cet article est d’exposer de nouveaux exemples de structures anti-de Sitter sur des fibrés en cercles au-dessus d’une surface hyperbolique qui ne sont pas, modulo revêtement et quotient finis, des déformations de structures homogènes.
A brief exposition of Lie algebroids, followed by a discussion of vector forms and their brackets in this context - and a formula for these brackets in “deformed” Lie algebroids.
A Weitzenböck formula for the Laplace-Beltrami operator acting on differential forms on Lie algebroids is derived.