The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We present here a simplified version of recent results obtained with B. Helffer and M. Klein. They are concerned with the exponentally small eigenvalues of the Witten Laplacian on -forms. We show how the Witten complex structure is better taken into account by working with singular values. This provides a convenient framework to derive accurate approximations of the first eigenvalues of and solves efficiently the question of weakly resonant wells.
The conformal infinity of a quaternionic-Kähler metric on a -manifold with boundary is a codimension distribution on the boundary called quaternionic contact. In dimensions greater than , a quaternionic contact structure is always the conformal infinity of a quaternionic-Kähler metric. On the contrary, in dimension , we prove a criterion for quaternionic contact structures to be the conformal infinity of a quaternionic-Kähler metric. This allows us to find the quaternionic-contact structures...
Currently displaying 1 –
2 of
2