Loading [MathJax]/extensions/MathZoom.js
Let be a symmetric space of the noncompact type, with Laplace–Beltrami operator , and let be the -spectrum of . For in
such that , let be the operator on
defined formally as . In this paper, we
obtain operator norm estimates for for all , and show
that these are optimal when is small and when is
bounded below .
Let be a long range metric perturbation of the Euclidean Laplacian on , . We prove local energy decay for the solutions of the wave, Klein-Gordon and Schrödinger equations associated to . The problem is decomposed in a low and high frequency analysis. For the high energy part, we assume a non trapping condition. For low (resp. high) frequencies we obtain a general result about the local energy decay for the group where has a suitable development at zero (resp. infinity).
Currently displaying 1 –
5 of
5