Page 1

Displaying 1 – 1 of 1

Showing per page

Quantum Equivalent Magnetic Fields that Are Not Classically Equivalent

Carolyn Gordon, William Kirwin, Dorothee Schueth, David Webb (2010)

Annales de l’institut Fourier

We construct pairs of compact Kähler-Einstein manifolds ( M i , g i , ω i ) ( i = 1 , 2 ) of complex dimension n with the following properties: The canonical line bundle L i = n T * M i has Chern class [ ω i / 2 π ] , and for each positive integer k the tensor powers L 1 k and L 2 k are isospectral for the bundle Laplacian associated with the canonical connection, while M 1 and M 2 – and hence T * M 1 and T * M 2 – are not homeomorphic. In the context of geometric quantization, we interpret these examples as magnetic fields which are quantum equivalent but not classically equivalent....

Currently displaying 1 – 1 of 1

Page 1