A conformally invariant sphere theorem in four dimensions
We construct a two dimensional foliation with dense leaves on the Heisenberg nilmanifold for which smooth leafwise Hodge decomposition does not hold. It is also shown that a certain type of dynamical trace formulas relating periodic orbits with traces on leafwise cohomologies does not hold for arbitrary flows.
We propose to study a fully nonlinear version of the Yamabe problem on manifolds with boundary. The boundary condition for the conformal metric is the mean curvature. We establish some Liouville type theorems and Harnack type inequalities.