The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
All second order scalar differential invariants of symplectic hyperbolic and elliptic Monge-Ampère equations with respect to symplectomorphisms are explicitly computed. In particular, it is shown that the number of independent second order invariants is equal to 7, in sharp contrast with general Monge-Ampère equations for which this number is equal to 2. We also introduce a series of invariant differential forms and vector fields which allow us to construct numerous scalar differential invariants...
The aim of the first part of a series of papers is to give a description of invariant differential operators on manifolds with an almost Hermitian symmetric structure of the type which are defined on bundles associated to the reducible but undecomposable representation of the parabolic subgroup of the Lie group . One example of an operator of this type is the Penrose’s local twistor transport. In this part general theory is presented, and conformally invariant operators are studied in more...
, that is to say, Lorentzian manifolds with vanishing second derivative of the curvature tensor , are characterized by several geometric properties, and explicitly presented. Locally, they are a product where each factor is uniquely determined as follows: is a Riemannian symmetric space and is either a constant-curvature Lorentzian space or a definite type of plane wave generalizing the Cahen–Wallach family. In the proper case (i.e., at some point), the curvature tensor turns out to...
The (infinitesimal) symmetries of first and second-order partial differential equations represented by connections on fibered manifolds are studied within the framework of certain “strong horizontal“ structures closely related to the equations in question. The classification and global description of the symmetries is presented by means of some natural compatible structures, eġḃy vertical prolongations of connections.
We classify nonconstant entire local minimizers of the standard Ginzburg–Landau functional for maps in satisfying a natural energy bound. Up to translations and rotations,such solutions of the Ginzburg–Landau system are given by an explicit solution equivariant under
the action of the orthogonal group.
Currently displaying 1 –
20 of
21