The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 321 –
340 of
472
Using explicit representations of the Brownian motions on hyperbolic spaces, we show that their almost sure convergence and the central limit theorems for the radial components as time tends to infinity can be easily obtained. We also give a straightforward strategy to obtain explicit expressions for the limit distributions or Poisson kernels.
Supposing that the metric space in question supports a fractional diffusion, we prove that after introducing an appropriate multiplicative factor, the Gagliardo seminorms of a function f ∈ L²(E,μ) have the property
,
where ℰ is the Dirichlet form relative to the fractional diffusion.
We consider the ensemble of curves {γα, N: α∈(0, 1], N∈ℕ} obtained by linearly interpolating the values of the normalized theta sum N−1/2∑n=0N'−1exp(πin2α), 0≤N'<N. We prove the existence of limiting finite-dimensional distributions for such curves as N→∞, when α is distributed according to any probability measure λ, absolutely continuous w.r.t. the Lebesgue measure on [0, 1]. Our Main Theorem generalizes a result by Marklof [Duke Math. J.97 (1999) 127–153] and Jurkat and van Horne [Duke...
A continuous-time model for the limit order book dynamics is considered. The set of outstanding limit orders is modeled as a pair of random counting measures and the limiting distribution of this pair of measure-valued processes is obtained under suitable conditions on the model parameters. The limiting behavior of the bid-ask spread and the midpoint of the bid-ask interval are also characterized.
The methods to establish the limiting spectral distribution (LSD) of large dimensional random matrices includes the well-known moment method which invokes the trace formula. Its success has been demonstrated in several types of matrices such as the Wigner matrix and the sample covariance matrix. In a recent article Bryc, Dembo and Jiang [Ann. Probab.34 (2006) 1–38] establish the LSD for random Toeplitz and Hankel matrices using the moment method. They perform the necessary counting of terms in the...
We study a Markov process on a system of interlacing particles. At large times the particles fill a domain that depends on a parameter ε > 0. The domain has two cusps, one pointing up and one pointing down. In the limit ε ↓ 0 the cusps touch, thus forming a tacnode. The main result of the paper is a derivation of the local correlation kernel around the tacnode in the transition regime ε ↓ 0. We also prove that the local process interpolates between the Pearcey process and the GUE minor process....
Some methods for approximating non-linear AR(1) processes by classical linear AR(1) models are proposed. The quality of approximation is studied in special non-linear AR(1) models by means of comparisons of quality of extrapolation and interpolation in the original models and in their approximations. It is assumed that the white noise has either rectangular or exponential distribution.
The distributions of linear combinations, products and ratios of random variables arise in many areas of engineering. In this note, the exact distributions of , and are derived when and are independent normal and logistic random variables. The normal and logistic distributions have been two of the most popular models for measurement errors in engineering.
The paper deals with the linear comparative calibration problem, i. e. the situation when both variables are subject to errors. Considered is a quite general model which allows to include possibly correlated data (measurements). From statistical point of view the model could be represented by the linear errors-in-variables (EIV) model. We suggest an iterative algorithm for estimation the parameters of the analysis function (inverse of the calibration line) and we solve the problem of deriving the...
Let be a Ornstein–Uhlenbeck diffusion governed by a stationary and ergodic process . We establish that under the condition with the stationary distribution of the regime process , the diffusion is ergodic. We also consider conditions for the existence of moments for the invariant law of when is a Markov jump process having a finite number of states. Using results on random difference equations on one hand and the fact that conditionally to , is gaussian on the other hand, we give...
Let Y be a Ornstein–Uhlenbeck diffusion governed by a
stationary and ergodic process X : dYt = a(Xt)Ytdt + σ(Xt)dWt,Y0 = y0.
We establish that under the condition α = Eµ(a(X0)) < 0 with μ the stationary distribution of
the regime process X, the diffusion
Y is ergodic.
We also consider conditions for the
existence of moments for the
invariant law of Y when X is a Markov jump process
having a finite number of states.
Using results on random difference equations
on one hand and the fact that...
Currently displaying 321 –
340 of
472