The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The notions of a -norm and of a fuzzy number are recalled. The law of large numbers for fuzzy numbers is defined. The fuzzy numbers, for which the law of large numbers holds, are investigated. The case when the law of large numbers is violated is studied.
We present two-sided estimates of moments and tails of polynomial chaoses of order at most three generated by independent symmetric random variables with log-concave tails as well as for chaoses of arbitrary order generated by independent symmetric exponential variables. The estimates involve only deterministic quantities and are optimal up to constants depending only on the order of the chaos variable.
Let be a sequence of independent symmetric real random variables with logarithmically concave tails. We consider a variable , where are real numbers. We derive approximate formulas for the tails and moments of X and of its decoupled version, which are exact up to some universal constants.
For random variables , where is a sequence of symmetric, independent, identically distributed random variables such that is a concave function we give estimates from above and from below for the tail and moments of S. The estimates are exact up to a constant depending only on the distribution of ξ. They extend results of S. J. Montgomery-Smith [MS], M. Ledoux and M. Talagrand [LT, Chapter 4.1] and P. Hitczenko [H] for the Rademacher sequence.
Let be a sequence of independent symmetric real random variables with logarithmically concave tails. We consider a variable , where are vectors of some Banach space. We derive approximate formulas for the tail and moments of ∥X∥. The estimates are exact up to some universal constant and they extend results of S. J. Dilworth and S. J. Montgomery-Smith [1] for the Rademacher sequence and E. D. Gluskin and S. Kwapień [2] for real coefficients.
This paper derives an explicit approximation for the tail probability of a sum of sample values taken without replacement from an unrestricted finite population. The approximation is shown to hold under no conditions in a wide range with relative error given in terms of the standardized absolute third moment of the population, β3N. This approximation is used to obtain a result comparable to the well-known Cramér large deviation result in the independent case, but with no restrictions on the sampled...
This paper derives an explicit approximation for the tail probability of a sum of sample
values taken without replacement from an unrestricted finite population. The approximation
is shown to hold under no conditions in a wide range with relative error given in terms of
the standardized absolute third moment of the population, β3N. This approximation is used to obtain
a result comparable to the well-known Cramér large deviation result in the independent
...
We determine the rate of decrease of the right tail distribution of the exponential functional of a Lévy process with a convolution equivalent Lévy measure. Our main result establishes that it decreases as the right tail of the image under the exponential function of the Lévy measure of the underlying Lévy process. The method of proof relies on fluctuation theory of Lévy processes and an explicit pathwise representation of the exponential functional as the exponential functional of a bivariate subordinator....
Consider a random environment in given by i.i.d. conductances.
In this work, we obtain tail estimates for the fluctuations about the
mean for the following characteristics of the environment:
the effective conductance between opposite faces of a cube,
the diffusion matrices of periodized environments
and the spectral gap of the random walk in a finite cube.
The paper presents some connections between two tail orderings of distributions and the total time on test transform. The procedure for testing the pure-tail ordering is proposed.
We give a sufficient condition for a non-negative random variable to be of Pareto type by investigating the Laplace-Stieltjes transform of the cumulative distribution function. We focus on the relation between the singularity at the real point of the axis of convergence and the asymptotic decay of the tail probability. For the proof of our theorems, we apply Graham-Vaaler’s complex Tauberian theorem. As an application of our theorems, we consider the asymptotic decay of the stationary distribution...
Currently displaying 1 –
20 of
721