Displaying 121 – 140 of 181

Showing per page

Random walk on a building of type Ãr and brownian motion of the Weyl chamber

Bruno Schapira (2009)

Annales de l'I.H.P. Probabilités et statistiques

In this paper we study a random walk on an affine building of type Ãr, whose radial part, when suitably normalized, converges toward the brownian motion of the Weyl chamber. This gives a new discrete approximation of this process, alternative to the one of Biane (Probab. Theory Related Fields89 (1991) 117–129). This extends also the link at the probabilistic level between riemannian symmetric spaces of the noncompact type and their discrete counterpart, which had been previously discovered by Bougerol...

Repeat distributions from unequal crossovers

Michael Baake (2008)

Banach Center Publications

It is a well-known fact that genetic sequences may contain sections with repeated units, called repeats, that differ in length over a population, with a length distribution of geometric type. A simple class of recombination models with single crossovers is analysed that result in equilibrium distributions of this type. Due to the nonlinear and infinite-dimensional nature of these models, their analysis requires some nontrivial tools from measure theory and functional analysis, which makes them interesting...

Shuffles of Min.

Piotr Mikusinski, Howard Sherwood, Michael D. Taylor (1992)

Stochastica

Copulas are functions which join the margins to produce a joint distribution function. A special class of copulas called shuffles of Min is shown to be dense in the collection of all copulas. Each shuffle of Min is interpreted probabilistically. Using the above-mentioned results, it is proved that the joint distribution of any two continuously distributed random variables X and Y can be approximated uniformly, arbitrarily closely by the joint distribution of another pair X* and Y* each of which...

Strong tightness as a condition of weak and almost sure convergence

Grzegorz Krupa, Wiesław Zieba (1996)

Commentationes Mathematicae Universitatis Carolinae

A sequence of random elements { X j , j J } is called strongly tight if for an arbitrary ϵ > 0 there exists a compact set K such that P j J [ X j K ] > 1 - ϵ . For the Polish space valued sequences of random elements we show that almost sure convergence of { X n } as well as weak convergence of randomly indexed sequence { X τ } assure strong tightness of { X n , n } . For L 1 bounded Banach space valued asymptotic martingales strong tightness also turns out to the sufficient condition of convergence. A sequence of r.e. { X n , n } is said to converge essentially with...

Currently displaying 121 – 140 of 181