Convolutions of probability measures on semigroups.
We introduce the notion of a critical constant for recurrence of random walks on -spaces. For a subgroup of a finitely generated group the critical constant is an asymptotic invariant of the quotient -space . We show that for any infinite -space . We say that is very small if . For a normal subgroup the quotient space is very small if and only if it is finite. However, we give examples of infinite very small -spaces. We show also that critical constants for recurrence can be used...