Displaying 421 – 440 of 1112

Showing per page

Long time behavior of random walks on abelian groups

Alexander Bendikov, Barbara Bobikau (2010)

Colloquium Mathematicae

Let be a locally compact non-compact metric group. Assuming that is abelian we construct symmetric aperiodic random walks on with probabilities n ( S 2 n V ) of return to any neighborhood V of the neutral element decaying at infinity almost as fast as the exponential function n ↦ exp(-n). We also show that for some discrete groups , the decay of the function n ( S 2 n V ) can be made as slow as possible by choosing appropriate aperiodic random walks Sₙ on .

Many-dimensional observables on Łukasiewicz tribe: constructions, conditioning and conditional independence

Tomáš Kroupa (2005)

Kybernetika

Probability on collections of fuzzy sets can be developed as a generalization of the classical probability on σ -algebras of sets. A Łukasiewicz tribe is a collection of fuzzy sets which is closed under the standard fuzzy complementation and under the pointwise application of the Łukasiewicz t-norm to countably many fuzzy sets. An observable is a fuzzy set-valued mapping defined on a σ -algebra of sets and satisfying some additional properties; formally, the role of an observable is in a sense analogous...

Currently displaying 421 – 440 of 1112