Displaying 641 – 660 of 1112

Showing per page

Orbit coupling

Hans-Otto Georgii (1997)

Annales de l'I.H.P. Probabilités et statistiques

Penalisation of a stable Lévy process involving its one-sided supremum

Kouji Yano, Yuko Yano, Marc Yor (2010)

Annales de l'I.H.P. Probabilités et statistiques

Penalisation involving the one-sided supremum for a stable Lévy process with index α∈(0, 2] is studied. We introduce the analogue of Azéma–Yor martingales for a stable Lévy process and give the law of the overall supremum under the penalised measure.

Pénalisations de l’araignée brownienne

Joseph Najnudel (2007)

Annales de l’institut Fourier

Dans cet article, nous pénalisons la loi d’une araignée brownienne ( A t ) t 0 prenant ses valeurs dans un ensemble fini E de demi-droites concourantes, avec un poids égal à 1 Z t exp ( α N t X t + γ L t ) , où t est un réel positif, ( α k ) k E une famille de réels indexés par E , γ un paramètre réel, X t la distance de A t à l’origine, N t ( E ) la demi-droite sur laquelle se trouve A t , L t le temps local de ( X s ) 0 s t à l’origine, et Z t la constante de normalisation. Nous montrons que la famille des mesures de probabilité obtenue par ces pénalisations converge vers...

Periodic and almost periodic flows of periodic Ito equations

C. Tudor (1992)

Mathematica Bohemica

Under the uniform asymptotic stability of a finite dimensional Ito equation with periodic coefficients, the asymptotically almost periodicity of the l p -bounded solution and the existence of a trajectory of an almost periodic flow defined on the space of all probability measures are established.

Perturbed Toeplitz operators and radial determinantal processes

Torsten Ehrhardt, Brian Rider (2013)

Annales de l'I.H.P. Probabilités et statistiques

We study a class of rotation invariant determinantal ensembles in the complex plane; examples include the eigenvalues of Gaussian random matrices and the roots of certain families of random polynomials. The main result is a criterion for a central limit theorem to hold for angular statistics of the points. The proof exploits an exact formula relating the generating function of such statistics to the determinant of a perturbed Toeplitz matrix.

Phénomène de cutoff pour certaines marches aléatoires sur le groupe symétrique

Sandrine Roussel (2000)

Colloquium Mathematicae

The main purpose of this paper is to exhibit the cutoff phenomenon, studied by Aldous and Diaconis [AD]. Let Q * k denote a transition kernel after k steps and π be a stationary measure. We have to find a critical value k n for which the total variation norm between Q * k and π stays very close to 1 for k k n , and falls rapidly to a value close to 0 for k k n with a fall-off phase much shorter than k n . According to the work of Diaconis and Shahshahani [DS], one can naturally conjecture, for a conjugacy class with...

Pointwise estimates for densities of stable semigroups of measures

Paweł Głowacki, Waldemar Hebisch (1993)

Studia Mathematica

Let μ t be a symmetric α-stable semigroup of probability measures on a homogeneous group N, where 0 < α < 2. Assume that μ t are absolutely continuous with respect to Haar measure and denote by h t the corresponding densities. We show that the estimate h t ( x ) t Ω ( x / | x | ) | x | - n - α , x≠0, holds true with some integrable function Ω on the unit sphere Σ if and only if the density of the Lévy measure of the semigroup belongs locally to the Zygmund class LlogL(N╲e). The problem turns out to be related to the properties of the maximal...

Currently displaying 641 – 660 of 1112