An Open Mapping Theorem for Measures.
The study of Gaussian convolution semigroups is a subject at the crossroad between abstract and concrete problems in harmonic analysis. This article suggests selected open problems that are in large part motivated by joint work with Alexander Bendikov.
Over a non-archimedean local field the absolute value, raised to any positive power , is a negative definite function and generates (the analogue of) the symmetric stable process. For , this process is transient with potential operator given by M. Riesz’ kernel. We develop this potential theory purely analytically and in an explicit manner, obtaining special features afforded by the non-archimedean setting ; e.g. Harnack’s inequality becomes an equality.
Let Aff(𝕋) be the group of isometries of a homogeneous tree 𝕋 fixing an end of its boundary. Given a probability measure on Aff(𝕋) we consider an associated random process on the tree. It is known that under suitable hypothesis this random process converges to the boundary of the tree defining a harmonic measure there. In this paper we study the asymptotic behaviour of this measure.