Displaying 261 – 280 of 402

Showing per page

On uniform tail expansions of multivariate copulas and wide convergence of measures

Piotr Jaworski (2006)

Applicationes Mathematicae

The theory of copulas provides a useful tool for modeling dependence in risk management. In insurance and finance, as well as in other applications, dependence of extreme events is particularly important, hence there is a need for a detailed study of the tail behaviour of multivariate copulas. We investigate the class of copulas having regular tails with a uniform expansion. We present several equivalent characterizations of uniform tail expansions. Next, basing on them, we determine the class of...

Optimal nonlinear transformations of random variables

Aldo Goia, Ernesto Salinelli (2010)

Annales de l'I.H.P. Probabilités et statistiques

In this paper we deepen the study of the nonlinear principal components introduced by Salinelli in 1998, referring to a real random variable. New insights on their probabilistic and statistical meaning are given with some properties. An estimation procedure based on spline functions, adapting to a statistical framework the classical Rayleigh–Ritz method, is introduced. Asymptotic properties of the estimator are proved, providing an upper bound for the rate of convergence under suitable mild conditions....

Plug-in estimation of level sets in a non-compact setting with applications in multivariate risk theory

Elena Di Bernardino, Thomas Laloë, Véronique Maume-Deschamps, Clémentine Prieur (2013)

ESAIM: Probability and Statistics

This paper deals with the problem of estimating the level sets L(c) =  {F(x) ≥ c}, with c ∈ (0,1), of an unknown distribution function F on ℝ+2. A plug-in approach is followed. That is, given a consistent estimator Fn of F, we estimate L(c) by Ln(c) =  {Fn(x) ≥ c}. In our setting, non-compactness property is a priori required for the level sets to estimate. We state consistency results with respect to the Hausdorff distance and the volume of the symmetric difference. Our results are motivated by...

Polynomial expansions of density of power mixtures

Denys Pommeret (2007)

ESAIM: Probability and Statistics

For any given random variable Y with infinitely divisible distribution in a quadratic natural exponential family we obtain a polynomial expansion of the power mixture density of Y. We approach the problem generally, and then consider certain distributions in greater detail. Various applications are indicated and the results are also applied to obtain approximations and their error bounds. Estimation of density and goodness-of-fit test are derived.

Probability distribution solutions of a general linear equation of infinite order

Tomasz Kochanek, Janusz Morawiec (2009)

Annales Polonici Mathematici

Let (Ω,,P) be a probability space and let τ: ℝ × Ω → ℝ be strictly increasing and continuous with respect to the first variable, and -measurable with respect to the second variable. We obtain a partial characterization and a uniqueness-type result for solutions of the general linear equation F ( x ) = Ω F ( τ ( x , ω ) ) P ( d ω ) in the class of probability distribution functions.

Probability distribution solutions of a general linear equation of infinite order, II

Tomasz Kochanek, Janusz Morawiec (2010)

Annales Polonici Mathematici

Let (Ω,,P) be a probability space and let τ: ℝ × Ω → ℝ be a mapping strictly increasing and continuous with respect to the first variable, and -measurable with respect to the second variable. We discuss the problem of existence of probability distribution solutions of the general linear equation F ( x ) = Ω F ( τ ( x , ω ) ) P ( d ω ) . We extend our uniqueness-type theorems obtained in Ann. Polon. Math. 95 (2009), 103-114.

Currently displaying 261 – 280 of 402