Réarrangement, inégalités maximales et théorèmes ergodiques fractionnaires
Étant donné un semi-flot mesurable préservant une mesure de probabilité sur un espace , nous considérons les moyennes ergodiques où est un “poids” à support compact sur , c’est-à-dire que vérifie et . Nous démontrons la convergence p.p. de ces moyennes quand si appartient à l’espace de Lorentz défini par le poids qui est le réarrangé décroissant de . En particulier, pour , on obtient la convergence p.p. des moyennes de Césarò d’ordre