Éléments extrémaux pour les inégalités de Brunn-Minkowski gaussiennes
We provide a new exponential concentration inequality for first passage percolation valid for a wide class of edge times distributions. This improves and extends a result by Benjamini, Kalai and Schramm (Ann. Probab.31 (2003)) which gave a variance bound for Bernoulli edge times. Our approach is based on some functional inequalities extending the work of Rossignol (Ann. Probab.35 (2006)), Falik and Samorodnitsky (Combin. Probab. Comput.16 (2007)).
If a probability density p(x) (x ∈ ℝk) is bounded and R(t) := ∫e〈x, tu〉p(x)dx < ∞ for some linear functional u and all t ∈ (0,1), then, for each t ∈ (0,1) and all large enough n, the n-fold convolution of the t-tilted density ˜pt := e〈x, tu〉p(x)/R(t) is bounded. This is a corollary of a general, “non-i.i.d.” result, which is also shown to enjoy a certain optimality property. Such results and their corollaries stated in terms of the absolute integrability of the corresponding characteristic...
If a probability density p(x) (x ∈ ℝk) is bounded and R(t) := ∫e〈x, tu〉p(x)dx < ∞ for some linear functional u and all t ∈ (0,1), then, for each t ∈ (0,1) and all large enough n, the n-fold convolution of the t-tilted density := e〈x, tu〉p(x)/R(t) is bounded. This is a corollary of a general, “non-i.i.d.” result, which is also shown to enjoy a certain optimality property. Such results and their corollaries stated in terms of the absolute integrability of the corresponding characteristic...
In this paper, we develop some stochastic dominance theorems for the location and scale family and linear combinations of random variables and for risk lovers as well as risk averters that extend results in Hadar and Russell (1971) and Tesfatsion (1976). The results are discussed and applied to decision-making.
In this paper we study some properties of the distribution function of the random variable C(X,Y) when the copula of the random pair (X,Y) is M (respectively, W) – the copula for which each of X and Y is almost surely an increasing (respectively, decreasing) function of the other –, and C is any copula. We also study the distribution functions of M(X,Y) and W(X,Y) given that the joint distribution function of the random variables X and Y is any copula.