On a multivariate version of Bernstein's inequality.
An exponential inequality for Choquet expectation is discussed. We also obtain a strong law of large numbers based on Choquet expectation. The main results of this paper improve some previous results obtained by many researchers.
In this paper we derive conditions upon the nonnegative random variable under which the inequality holds for a fixed nonnegative constant and for any absolutely continuous function . Taking into account the characterization of a Gamma distribution we consider the functional and establishing some of its properties we show that and that iff the random variable has a Gamma distribution.
In this paper, we consider ℝd-valued integrable processes which are increasing in the convex order, i.e. ℝd-valued peacocks in our terminology. After the presentation of some examples, we show that an ℝd-valued process is a peacock if and only if it has the same one-dimensional marginals as an ℝd-valued martingale. This extends former results, obtained notably by Strassen [Ann. Math. Stat. 36 (1965) 423–439], Doob [J. Funct. Anal. 2 (1968) 207–225] and Kellerer [Math. Ann. 198 (1972) 99–122].
Mixtures are convex combinations of laws. Despite this simple definition, a mixture can be far more subtle than its mixed components. For instance, mixing gaussian laws may produce a potential with multiple deep wells. We study in the present work fine properties of mixtures with respect to concentration of measure and Sobolev type functional inequalities. We provide sharp Laplace bounds for Lipschitz functions in the case of generic mixtures, involving a transportation cost diameter of the mixed...
We introduce a concept of functional measures of skewness which can be used in a wider context than some classical measures of asymmetry. The Hotelling and Solomons theorem is generalized.
We are interested in Gaussian versions of the classical Brunn-Minkowski inequality. We prove in a streamlined way a semigroup version of the Ehrhard inequality for m Borel or convex sets based on a previous work by Borell. Our method also yields semigroup proofs of the geometric Brascamp-Lieb inequality and of its reverse form, which follow exactly the same lines.
The notion of cumulative past inaccuracy (CPI) measure has recently been proposed in the literature as a generalization of cumulative past entropy (CPE) in univariate as well as bivariate setup. In this paper, we introduce the notion of CPI of order and study the proposed measure for conditionally specified models of two components failed at different time instants, called generalized conditional CPI (GCCPI). Several properties, including the effect of monotone transformation and bounds of GCCPI...
In this paper, we obtain lower bounds for the variance of a function of random variables in terms of measures of reliability and entropy. Also based on the obtained characterization via the lower bounds for the variance of a function of random variable , we find a characterization of the weighted function corresponding to density function , in terms of Chernoff-type inequalities. Subsequently, we obtain monotonic relationships between variance residual life and dynamic cumulative residual entropy...
We study concentration properties for vector-valued maps. In particular, we describe inequalities which capture the exact dimensional behavior of Lipschitz maps with values in . To this end, we study in particular a domination principle for projections which might be of independent interest. We further compare our conclusions with earlier results by Pinelis in the Gaussian case, and discuss extensions to the infinite-dimensional setting.
We derive some new results for preservation of various stochastic orders and aging classes under weighted distributions. The corresponding reversed preservation properties as straightforward conclusions of the obtained results for the direct preservation properties, are developed. Damage model of Rao, residual lifetime distribution, proportional hazards and proportional reversed hazards models are discussed as special weighted distributions to try some of our results.
In this paper, we consider the linear and circular consecutive -out-of- systems consisting of arbitrarily dependent components. Under the condition that at least components () of the system are working at time , we study the reliability properties of the residual lifetime of such systems. Also, we present some stochastic ordering properties of residual lifetime of consecutive -out-of- systems. In the following, we investigate the inactivity time of the component with lifetime at the system...