Page 1 Next

Displaying 1 – 20 of 30

Showing per page

Characterizations based on length-biased weighted measure of inaccuracy for truncated random variables

Chanchal Kundu (2014)

Applications of Mathematics

In survival studies and life testing, the data are generally truncated. Recently, authors have studied a weighted version of Kerridge inaccuracy measure for truncated distributions. In the present paper we consider weighted residual and weighted past inaccuracy measure and study various aspects of their bounds. Characterizations of several important continuous distributions are provided based on weighted residual (past) inaccuracy measure.

Characterizations of continuous distributions through inequalities involving the expected values of selected functions

Faranak Goodarzi, Mohammad Amini, Gholam Reza Mohtashami Borzadaran (2017)

Applications of Mathematics

Nanda (2010) and Bhattacharjee et al. (2013) characterized a few distributions with help of the failure rate, mean residual, log-odds rate and aging intensity functions. In this paper, we generalize their results and characterize some distributions through functions used by them and Glaser’s function. Kundu and Ghosh (2016) obtained similar results using reversed hazard rate, expected inactivity time and reversed aging intensity functions. We also, via w ( · ) -function defined by Cacoullos and Papathanasiou...

Characterizations of inequality orderings by means of dispersive orderings.

Héctor M. Ramos Romero, Miguel Angel Sordo Díaz (2002)

Qüestiió

The generalized Lorenz order and the absolute Lorenz order are used in economics to compare income distributions in terms of social welfare. In Section 2, we show that these orders are equivalent to two stochastic orders, the concave order and the dilation order, which are used to compare the dispersion of probability distributions. In Section 3, a sufficient condition for the absolute Lorenz order, which is often easy to verify in practice, is presented. This condition is applied in Section 4 to...

Chevet type inequality and norms of submatrices

Radosław Adamczak, Rafał Latała, Alexander E. Litvak, Alain Pajor, Nicole Tomczak-Jaegermann (2012)

Studia Mathematica

We prove a Chevet type inequality which gives an upper bound for the norm of an isotropic log-concave unconditional random matrix in terms of the expectation of the supremum of “symmetric exponential” processes, compared to the Gaussian ones in the Chevet inequality. This is used to give a sharp upper estimate for a quantity Γ k , m that controls uniformly the Euclidean operator norm of the submatrices with k rows and m columns of an isotropic log-concave unconditional random matrix. We apply these estimates...

Comparación de curvas de supervivencia gamma estocásticamente ordenadas.

José D. Bermúdez Edo, Eduardo Beamonte Córdoba (2000)

Qüestiió

En este trabajo se propone un análisis de supervivencia basado en un modelo Gamma. Se obtienen las condiciones teóricas bajo las cuales dos funciones de supervivencia Gamma están estocásticamente ordenadas. Estos resultados se utilizan para proponer un método sencillo que permite comparar dos poblaciones cuando, a priori, se conoce que sus curvas de supervivencia están estocásticamente ordenadas. Los resultados se ejemplifican con el análisis de un banco de datos reales sobre tiempos de desempleo....

Comparison of order statistics in a random sequence to the same statistics with I.I.D. variables

Jean-Louis Bon, Eugen Păltănea (2006)

ESAIM: Probability and Statistics

The paper is motivated by the stochastic comparison of the reliability of non-repairable k -out-of- n systems. The lifetime of such a system with nonidentical components is compared with the lifetime of a system with identical components. Formally the problem is as follows. Let U i , i = 1 , . . . , n , be positive independent random variables with common distribution F . For λ i > 0 and μ > 0 , let consider X i = U i / λ i and Y i = U i / μ , i = 1 , . . . , n . Remark that this is no more than a change of scale for each term. For k { 1 , 2 , . . . , n } , let us define X k : n to be the k th order statistics...

Comparison of order statistics in a random sequence to the same statistics with i.i.d. variables

Jean-Louis Bon, Eugen Păltănea (2005)

ESAIM: Probability and Statistics

The paper is motivated by the stochastic comparison of the reliability of non-repairable k-out-of-n systems. The lifetime of such a system with nonidentical components is compared with the lifetime of a system with identical components. Formally the problem is as follows. Let Ui,i = 1,...,n, be positive independent random variables with common distribution F. For λi > 0 and µ > 0, let consider Xi = Ui/λi and Yi = Ui/µ, i = 1,...,n. Remark that this is no more than a change of scale for each...

Complete convergence of weighted sums for arrays of rowwise ϕ -mixing random variables

Xinghui Wang, Xiaoqin Li, Shuhe Hu (2014)

Applications of Mathematics

In this paper, we establish the complete convergence and complete moment convergence of weighted sums for arrays of rowwise ϕ -mixing random variables, and the Baum-Katz-type result for arrays of rowwise ϕ -mixing random variables. As an application, the Marcinkiewicz-Zygmund type strong law of large numbers for sequences of ϕ -mixing random variables is obtained. We extend and complement the corresponding results of X. J. Wang, S. H. Hu (2012).

Concentration inequalities for semi-bounded martingales

Yu Miao (2008)

ESAIM: Probability and Statistics

In this paper, we apply the technique of decoupling to obtain some exponential inequalities for semi-bounded martingale, which extend the results of de la Peña, Ann. probab. 27 (1999) 537–564.

Concentration inequalities for semi-bounded martingales

Yu Miao (2007)

ESAIM: Probability and Statistics

In this paper, we apply the technique of decoupling to obtain some exponential inequalities for semi-bounded martingale, which extend the results of de la Peña, Ann. probab.27 (1999) 537–564.

Concentration of measure on product spaces with applications to Markov processes

Gordon Blower, François Bolley (2006)

Studia Mathematica

For a stochastic process with state space some Polish space, this paper gives sufficient conditions on the initial and conditional distributions for the joint law to satisfy Gaussian concentration inequalities and transportation inequalities. In the case of the Euclidean space m , there are sufficient conditions for the joint law to satisfy a logarithmic Sobolev inequality. In several cases, the constants obtained are of optimal order of growth with respect to the number of random variables, or are...

Currently displaying 1 – 20 of 30

Page 1 Next